Plate Tectonics: A Unifying Theory
OUTLINE
Introduction
Early Ideas About Continental Drift
What Is the Evidence for Continental Drift?
Earth’s Magnetic Field
Paleomagnetism and Polar Wandering
Magnetic Reversals and Seafloor Spreading
Plate Tectonics: A Unifying Theory
GEO-INSIGHT: Tectonics of the Terrestrial Planets
The Three Types of Plate Boundaries
Hot Spots and Mantle Plumes
Plate Movement and Motion
The Driving Mechanism of Plate Tectonics
Plate Tectonics and the Distribution of Natural Resources
GEO-FOCUS: Oil, Plate Tectonics, and Politics
Plate Tectonics and the Distribution of Life
Geo-Recap

OBJECTIVES
At the end of this chapter, you will have learned that
- Plate tectonics is the unifying theory of geology and has revolutionized geology.
- The hypothesis of continental drift was based on considerable geologic, paleontologic, and climatologic evidence.
- The hypothesis of seafloor spreading accounts for continental movement and the idea that thermal convection cells provide a mechanism for plate movement.
- The three types of plate boundaries are divergent, convergent, and transform. Along these boundaries new plates are formed, consumed, or slide past one another.
- Interaction along plate boundaries accounts for most of Earth’s earthquake and volcanic activity.

An earthquake survivor walks among the ruins of houses in Bantul, central Indonesia, where a 6.3-magnitude earthquake on May 27, 2006, left more than 6200 dead and more than 200,000 people homeless. Devastating earthquakes such as this are the result of movement along plate boundaries. Such earthquakes are part of the interaction between plates and, unfortunately for humans, will continue to result in tremendous loss of life and property damage in seismically active areas.
The rate of movement and motion of plates can be calculated in several ways.

Some type of convective heat system is involved in plate movement.

Plate movement affects the distribution of natural resources.

Plate movement affects the distribution of the world’s biota and has influenced evolution.

INTRODUCTION

Imagine it is the day after Christmas, December 26, 2004, and you are vacationing on a beautiful beach in Thailand. You look up from the book you’re reading to see the sea suddenly retreat from the shoreline, exposing a vast expanse of seafloor that had moments before been underwater and teeming with exotic and colorful fish. It is hard to believe that within minutes of this unusual event, a powerful tsunami will sweep over your resort and everything in its path for several kilometers inland. Within hours, the coasts of Indonesia, Sri Lanka, India, Thailand, Somalia, Myanmar, Malaysia, and the Maldives will be inundated by the deadliest tsunami in history. More than 220,000 people will die, and the region will incur billions of dollars in damage.

One year earlier, on December 26, 2003, violent shaking from an earthquake awakened hundreds of thousands of people in the Bam area of southeastern Iran. When the magnitude-6.6 earthquake was over, an estimated 43,000 people were dead, at least 30,000 were injured, and approximately 75,000 survivors were left homeless. At least 85% of the structures in the Bam area were destroyed or damaged. Collapsed buildings were everywhere, streets were strewn with rubble, and all communications were knocked out.

Now go back another 12½ years to June 15, 1991, when Mount Pinatubo in the Philippines erupted violently, discharging huge quantities of ash and gases into the atmosphere. Fortunately, in this case, warnings of an impending eruption were broadcast and heeded, resulting in the evacuation of 200,000 people from areas around the volcano. Unfortunately, the eruption still caused at least 364 deaths not only from the eruption, but also from the ensuing mudflows.

What do these three recent tragic events have in common? They are part of the dynamic interactions involving Earth’s plates. When two plates come together, one plate is pushed or pulled under the other plate, triggering large earthquakes such as the one that shook India in 2001, Iran in 2003, Pakistan in 2005, and Indonesia in 2006. If conditions are right, earthquakes can produce a tsunami such as the one in 2004 or the 1998 Papua New Guinea tsunami that killed more than 2200 people.

As the descending plate moves downward and is assimilated into Earth’s interior, magma is generated. Being less dense than the surrounding material, the magma rises toward the surface, where it may erupt as a volcano such as Mount Pinatubo did in 1991 and others have since. It therefore should not be surprising that the distribution of volcanoes and earthquakes closely follows plate boundaries.

As we stated in Chapter 1, plate tectonic theory has had significant and far-reaching consequences in all fields of geology because it provides the basis for relating many seemingly unrelated phenomena. The interactions between moving plates determines the location of continents, ocean basins, and mountain systems, all of which, in turn, affect atmospheric and oceanic circulation patterns that ultimately determine global climate (see Table 1.3). Plate movements have also profoundly influenced the geographic distribution, evolution, and extinction of plants and animals. Furthermore, the formation and distribution of many natural resources, such as metal ores, are related to plate tectonic processes, so geologists incorporate plate tectonic theory into their prospecting efforts.

If you’re like most people, you probably have only a vague notion of what plate tectonic theory is. Yet plate tectonics affects all of us. Volcanic eruptions, earthquakes, and tsunamis are the result of interactions between plates. Global weather patterns and oceanic currents are caused, in part, by the configuration of the continents and ocean basins. The formation and distribution of many natural resources are related to plate movement, and thus have an impact on the economic well-being and political decisions of nations. It is therefore important to understand this unifying theory, not only because it affects us as individuals and as citizens of nation-states, but also because it ties together many aspects of the geology you will be studying.

EARLY IDEAS ABOUT CONTINENTAL DRIFT

The idea that Earth’s past geography was different from today is not new. The earliest maps showing the east coast of South America and the west coast of Africa probably provided people with the first evidence that continents may have once been joined together, then broken apart and moved to their present positions. As far back as 1620, Sir Francis Bacon commented on the similarity of the shorelines of western Africa and eastern South America. However, he did not make the connection that the Old and New Worlds might once have been joined together.

Antonio Snider-Pellegrini’s 1858 book Creation and Its Mysteries Revealed is one of the earliest specific references to the idea of continental drift. Snider-Pellegrini suggested that all of the continents were linked together during the Pennsylvanian Period and later split apart. He based his conclusions on the resemblances between plant fossils in the Pennsylvanian-aged coal beds of Europe and North America.

During the late 19th century, the Austrian geologist Edward Suess noted the similarities between the Late Paleozoic plant fossils of India, Australia, South Africa, and South America, as well as evidence of glaciation in the rock sequences of these continents. The plant fossils comprise a unique flora that occurs in the coal layers just above the glacial deposits of these southern continents. This flora is very different from the contemporaneous coal swamp flora of the northern continents, which Snider-Pellegrini noted earlier, and is collectively known as the Glossopteris flora after its most conspicuous genus (Figure 2.1).
In his book, *The Face of the Earth*, published in 1885, Suess proposed the name *Gondwanaland* (or *Gondwana* as we will use here) for a supercontinent composed of the aforementioned southern continents. Abundant fossils of the *Glossopteris* flora are found in coal beds in Gondwana, a province in India. Suess thought these southern continents were at one time connected by land bridges over which plants and animals migrated. Thus, in his view, the similarities of fossils on these continents were due to the appearance and disappearance of the connecting land bridges.

The American geologist Frank Taylor published a pamphlet in 1910 presenting his own theory of continental drift. He explained the formation of mountain ranges as a result of the lateral movement of continents. He also envisioned the present-day continents as parts of larger polar continents that eventually broke apart and migrated toward the equator after Earth’s rotation was supposedly slowed by gigantic tidal forces. According to Taylor, these tidal forces were generated when Earth captured the Moon approximately 100 million years ago.

Although we now know that Taylor’s mechanism is incorrect, one of his most significant contributions was his suggestion that the Mid-Atlantic Ridge, discovered by the 1872–1876 British HMS Challenger expeditions, might mark the site along which an ancient continent broke apart to form the present-day Atlantic Ocean.

Alfred Wegener and the Continental Drift Hypothesis

Alfred Wegener, a German meteorologist (Figure 2.2), is generally credited with developing the hypothesis of continental drift. In his monumental book, *The Origin of Continents and Oceans* (first published in 1915), Wegener proposed that all landmasses were originally united in a single supercontinent that he named *Pangaea*, from the Greek meaning “all land.” Wegener portrayed his grand concept of continental movement in a series of maps showing the breakup of Pangaea and the movement of the various continents to their present-day locations. Wegener amassed a tremendous amount of geologic, paleontologic, and climatologic evidence in support of continental drift; however, initial reaction of scientists to his then-heretical ideas can best be described as mixed.

Nevertheless, the eminent South African geologist Alexander du Toit further developed Wegener’s arguments and gathered more geologic and paleontologic evidence in support of continental drift. In 1937, du Toit published *Our Wandering Continents*, in which he contrasted the glacial deposits of Gondwana with coal deposits of the same age found in the continents of the Northern Hemisphere. To resolve this apparent climatologic paradox, du Toit moved the Gondwana continents to the South Pole and brought the northern continents together such that the coal deposits were located at the equator. He named this northern landmass *Laurasia*. It consisted of present-day North America, Greenland, Europe, and Asia (except for India).

WHAT IS THE EVIDENCE FOR CONTINENTAL DRIFT?

What then was the evidence Wegener, du Toit, and others used to support the hypothesis of continental drift? It includes the fit of the shorelines of continents, the appearance of the same rock sequences and mountain ranges of the same age on continents now widely separated, the matching of glacial deposits and paleoclimatic zones, and the similarities of many extinct plant and animal groups whose fossil remains are found today on widely separated continents. Wegener and his supporters argued that this vast amount of evidence from a variety of sources surely indicated that the continents must have been close together in the past.

Continental Fit

Wegener, like some before him, was impressed by the close resemblance between the coastlines of continents on opposite sides of the Atlantic Ocean, particularly South America.
and Africa. He cited these similarities as partial evidence that the continents were at one time joined together as a supercontinent that subsequently split apart. As his critics pointed out, though, the configuration of coastlines results from erosional and depositional processes and therefore is continuously being modified. So, even if the continents had separated during the Mesozoic Era, as Wegener proposed, it is not likely that the coastlines would fit exactly.

A more realistic approach is to fit the continents together along the continental slope where erosion would be minimal. In 1965, Sir Edward Bullard, an English geophysicist, and two associates showed that the best fit between the continents occurs at a depth of about 2000 m (Figure 2.3). Since then, other reconstructions using the latest ocean basin data have confirmed the close fit between continents when they are reassembled to form Pangaea.

Similarity of Rock Sequences and Mountain Ranges

If the continents were at one time joined, then the rocks and mountain ranges of the same age in adjoining locations on the opposite continents should closely match. Such is the case for the Gondwana continents (Figure 2.4). Marine, nonmarine, and glacial rocks of Pennsylvanian (UC) to Jurassic (J) age are nearly the same on all five Gondwana continents (South America, Africa, India, Australia, and Antarctica). These continents are widely separated today and have different environments and climates ranging from tropical to polar. Thus, the rocks forming on each continent are very different. When the continents were all joined together in the past, however, the environments of adjacent continents were similar and the rocks forming in those areas were similar. The range indicated by G in each column is the age range (Carboniferous–Permian) of the Glossopteris flora.

Figure 2.3 Continental Fit When continents are placed together based on their outlines, the best fit isn’t along their present-day coastlines, but rather along the continental slope at a depth of about 2000 m, where erosion would be minimal.

Figure 2.4 Similarity of Rock Sequences on the Gondwana Continents Sequences of marine, nonmarine, and glacial rocks of Pennsylvanian (UC) to Jurassic (J) age are nearly the same on all five Gondwana continents (South America, Africa, India, Australia, and Antarctica). These continents are widely separated today and have different environments and climates ranging from tropical to polar. Thus, the rocks forming on each continent are very different. When the continents were all joined together in the past, however, the environments of adjacent continents were similar and the rocks forming in those areas were similar. The range indicated by G in each column is the age range (Carboniferous–Permian) of the Glossopteris flora.
What is the Evidence for Continental Drift?

and glacial rock sequences of the Pennsylvanian to Jurassic periods are almost identical on all five Gondwana continents, strongly indicating that they were joined at one time.

The trends of several major mountain ranges also support the hypothesis of continental drift. These mountain ranges seemingly end at the coastline of one continent only to apparently continue on another continent across the ocean. The folded Appalachian Mountains of North America, for example, trend northeastward through the eastern United States and Canada and terminate abruptly at the Newfoundland coastline. Mountain ranges of the same age and deformational style are found in eastern Greenland, Ireland, Great Britain, and Norway. Interestingly, the same red sandstones used in the construction of many English and Scottish castles are used in various buildings throughout New York. So, even though the Appalachian Mountains and their equivalent-age mountain ranges in Great Britain are currently separated by the Atlantic Ocean, they form an essentially continuous mountain range when the continents are positioned next to each other as they were during the Paleozoic Era.

Glacial Evidence

During the Late Paleozoic Era, massive glaciers covered large continental areas of the Southern Hemisphere. Evidence for this glaciation includes layers of till (sediments deposited by glaciers) and striations (scratch marks) in the bedrock beneath the till. Fossils and sedimentary rocks of the same age from the Northern Hemisphere, however, give no indication of glaciation. Fossil plants found in coals indicate that the Northern Hemisphere had a tropical climate during the time that the Southern Hemisphere was glaciated.

All of the Gondwana continents except Antarctica are currently located near the equator in subtropical to tropical climates. Mapping of glacial striations in bedrock in Australia, India, and South America indicates that the glaciers moved from the areas of the present-day oceans onto land. This would be highly unlikely because large continental glaciers (such as occurred on the Gondwana continents during the Late Paleozoic Era) flow outward from their central area of accumulation toward the sea.

If the continents did not move during the past, one would have to explain how glaciers moved from the oceans onto land and how large-scale continental glaciers formed near the equator. But if the continents are reassembled as a single landmass with South Africa located at the South Pole, the direction of movement of Late Paleozoic continental glaciers makes sense (Figure 2.5). Furthermore, this geographic arrangement places the northern continents nearer the tropics, which is consistent with the fossil and climatologic evidence from Laurasia.

Fossil Evidence

Some of the most compelling evidence for continental drift comes from the fossil record (Figure 2.6). Fossils of the *Glossopteris* flora are found in equivalent Pennsylvanian- and...
Permian-aged coal deposits on all five Gondwana continents. The *Glossopteris* flora is characterized by the seed fern *Glossopteris* (Figure 2.1), as well as by many other distinctive and easily identifiable plants. Pollen and spores of plants can be dispersed over great distances by wind; however, *Glossopteris*-type plants produced seeds that are too large to have been carried by winds. Even if the seeds had floated across the ocean, they probably would not have remained viable for any length of time in saltwater.

The present-day climates of South America, Africa, India, Australia, and Antarctica range from tropical to polar and are much too diverse to support the type of plants in the *Glossopteris* flora. Wegener therefore reasoned that these continents must once have been joined so that these widely separated localities were all in the same latitudinal climatic belt (Figure 2.6).

The fossil remains of animals also provide strong evidence for continental drift. One of the best examples is *Mesosaurus*, a freshwater reptile whose fossils are found in Permian-aged rocks in certain regions of Brazil and South Africa and nowhere else in the world (Figure 2.6). Because the physiologies of freshwater and marine animals are completely different, it is hard to imagine how a freshwater reptile could have swum across the Atlantic Ocean and found a freshwater environment nearly identical to its former habitat. Moreover, if *Mesosaurus* could have swum across the ocean, its fossil remains should be widely dispersed. It is more logical to assume that the continents were once connected.

Lystrosaurus and *Cynognathus* are both land-dwelling reptiles that lived during the Triassic Period; their fossils are found only on the present-day continental fragments of Gondwana (Figure 2.6). Because they are both land animals, they certainly could not have swum across the oceans currently...
separating the Gondwana continents. Therefore, it is logical to assume that the continents must once have been connected. Recent discoveries of dinosaur fossils in the Gondwana continents further solidifies the argument that these landmasses were in close proximity during the Early Mesozoic Era.

Notwithstanding all of the empirical evidence presented by Wegener and later by du Toit and others, most geologists simply refused to entertain the idea that continents might have moved in the past. The geologists were not necessarily being obstinate about accepting new ideas; rather, they found the evidence for continental drift inadequate and unconvincing. In part, this was because no one could provide a suitable mechanism to explain how continents could move over Earth’s surface.

Interest in continental drift waned until new evidence from oceanographic research and studies of Earth’s magnetic field showed that the present-day ocean basins were not as old as the continents, but were geologically young features that resulted from the breakup of Pangaea.

EARTH’S MAGNETIC FIELD

What is magnetism and what is a magnetic field? Magnetism is a physical phenomenon resulting from the spin of electrons in some solids—particularly those of iron—and moving electricity. A magnetic field is an area in which magnetic substances such as iron are affected by lines of magnetic force emanating from a magnet (Figure 2.7). The magnetic field shown in Figure 2.7 is dipolar, meaning that it possesses two unlike magnetic poles referred to as the north and south poles.

Earth can be thought of as a giant dipole magnet in which the magnetic poles essentially coincide with the geographic poles (Figure 2.8). This arrangement means that the strength of the magnetic field is not constant, but varies. Notice in Figure 2.8 that the lines of magnetic force around Earth parallel its surface only near the equator. As the lines of force approach the poles, they are oriented at increasingly larger angles with respect to the surface, and the strength of the magnetic field increases; it is strongest at the poles and weakest at the equator.
Another important aspect of the magnetic field is that the magnetic poles, where the lines of force leave and enter Earth, do not coincide with the geographic (rotational) poles. Currently, an 11.5° angle exists between the two (Figure 2.8). Studies of the Earth’s magnetic field show that the locations of the magnetic poles vary slightly over time, but that they still correspond closely, on average, with the locations of the geographic poles.

Experts on magnetism do not fully understand all aspects of Earth’s magnetic field, but most agree that electrical currents resulting from convection in the liquid outer core generate it. Furthermore, it must be generated continuously or it would decay and Earth would have no magnetic field in as little as 20,000 years. The model most widely accepted now is that thermal and compositional convection within the liquid outer core, coupled with Earth’s rotation, produce complex electrical currents or a self-exciting dynamo that, in turn, generates the magnetic field.

PALEOMAGNETISM AND POLAR WANDERING

Interest in continental drift revived during the 1950s as a result of evidence from paleomagnetic studies, a relatively new discipline at the time. Paleomagnetism is the remanent magnetism in ancient rocks recording the direction and intensity of Earth’s magnetic poles at the time of the rock’s formation.

When magma cools, the magnetic iron-bearing minerals align themselves with Earth’s magnetic field, recording both its direction and strength. The temperature at which iron-bearing minerals gain their magnetization is called the Curie point. As long as the rock is not subsequently heated above the Curie point, it will preserve that remanent magnetism. Thus, an ancient lava flow provides a record of the orientation and strength of Earth’s magnetic field at the time the lava flow cooled.

As paleomagnetic research progressed during the 1950s, some unexpected results emerged. When geologists measured the paleomagnetism of geologically recent rocks, they found that it was generally consistent with Earth’s current magnetic field. The paleomagnetism of ancient rocks, though, showed different orientations. For example, paleomagnetic studies of Silurian lava flows in North America indicated that the north magnetic pole was located in the western Pacific Ocean at that time, whereas the paleomagnetic evidence from Permian lava flows pointed to yet another location in Asia. When plotted on a map, the paleomagnetic readings of numerous lava flows from all ages in North America trace the apparent movement of the magnetic pole (called polar wandering) through time (Figure 2.9).

This paleomagnetic evidence from a single continent could be interpreted in three ways: The continent remained fixed and the north magnetic pole moved; the north magnetic pole stood still and the continent moved; or both the continent and the north magnetic pole moved.

Upon analysis, magnetic minerals from European Silurian and Permian lava flows pointed to a different magnetic pole location from those of the same age from North America (Figure 2.9). Furthermore, analysis of lava flows from all continents indicated that each continent seemingly had its own series of magnetic poles. Does this really mean there were different north magnetic poles for each continent? That would be highly unlikely and difficult to reconcile with the theory accounting for Earth’s magnetic field.

The best explanation for such data is that the magnetic poles have remained near their present locations at the geographic north and south poles and the continents have moved. When the continental margins are fit together so that the paleomagnetic data point to only one magnetic pole, we find, just as Wegener did, that the rock sequences and glacial deposits match, and that the fossil evidence is consistent with the reconstructed paleogeography.

MAGNETIC REVERSALS AND SEAFOLOOR SPREADING

Geologists refer to Earth’s present magnetic field as being normal—that is, with the north and south magnetic poles located approximately at the north and south geographic poles. At various times in the geologic past, however, Earth’s magnetic field has completely reversed, that is, the magnetic north and south poles reverse positions, so that the magnetic north pole becomes the magnetic south pole, and the magnetic south pole becomes the magnetic north pole. During
such a reversal, the magnetic field weakens until it temporarily disappears. When the magnetic field returns, the magnetic poles have reversed their position. The existence of such magnetic reversals was discovered by dating and determining the orientation of the remanent magnetism in lava flows on land (Figure 2.10). Although the cause of magnetic reversals is still uncertain, their occurrence in the geologic record is well documented.

A renewed interest in oceanographic research led to extensive mapping of the ocean basins during the 1960s. Such mapping revealed an oceanic ridge system more than 65,000 km long, constituting the most extensive mountain range in the world. Perhaps the best-known part of the ridge system is the Mid-Atlantic Ridge, which divides the Atlantic Ocean basin into two nearly equal parts (Figure 2.11).

As a result of oceanographic research conducted during the 1950s, Harry Hess of Princeton University proposed, in a 1962 landmark paper, the theory of seafloor spreading to account for continental movement. He suggested that continents do not move through oceanic crust as do ships plowing through sea ice, but rather that the continents and oceanic crust move together as a single unit. Thus, the theory of seafloor spreading answered a major objection of the opponents of continental drift—namely, how could continents move through oceanic crust? In fact, the continents moved with the oceanic crust as part of a lithospheric system.

Hess postulated that the seafloor separates at oceanic ridges, where new crust is formed by upwelling magma. As the magma cools, the newly formed oceanic crust moves laterally away from the ridge.

As a mechanism to drive this system, Hess revived the idea (first proposed in the late 1920s by the British geologist Arthur Holmes) of a heat transfer system—or thermal convection cells—within the mantle as a mechanism to move the plates. According to Hess, hot magma rises from the mantle, intrudes along fractures defining oceanic ridges, and thus forms new crust. Cold crust is subducted back into the mantle at oceanic trenches, where it is heated and recycled, thus completing a thermal convection cell (see Figure 1.11).
How could Hess’s hypothesis be confirmed? Magnetic surveys of the oceanic crust revealed a pattern of striped magnetic anomalies (deviations from the average strength of Earth’s present-day magnetic field) in the rocks that are both parallel to and symmetric around the oceanic ridges (Figure 2.12). A positive magnetic anomaly results when Earth’s magnetic field at the time of oceanic crust formation along an oceanic ridge summit was the same as today, thus yielding a stronger than normal (positive) magnetic signal. A negative magnetic anomaly results when Earth’s magnetic field at the time of oceanic crust formation was reversed, thus yielding a weaker than normal (negative) magnetic signal.

Thus, as new oceanic crust forms at oceanic ridge summits and records Earth’s magnetic field at the time, the previously formed crust moves laterally away from the ridge. These magnetic stripes therefore represent times of normal and reversed polarity at oceanic ridges (where upwelling magma forms new oceanic crust), and conclusively confirm Hess’s theory of seafloor spreading.

One of the consequences of the seafloor spreading theory is its confirmation that ocean basins are geologically young features whose openings and closings are partially responsible for continental movement (Figure 2.13). Radiometric dating reveals that the oldest oceanic crust is somewhat younger than 180 million years old, whereas the oldest continental crust is 3.96 billion years old. Although geologists do not universally accept the idea of thermal convection cells as a driving mechanism for plate movement, most accept that plates are created at oceanic ridges and destroyed at deep-sea trenches, regardless of the driving mechanism involved.

Deep-Sea Drilling and the Confirmation of Seafloor Spreading

For many geologists, the paleomagnetic data amassed in support of continental drift and seafloor spreading were convincing. Results from the Deep-Sea Drilling Project (see Chapter 9) confirmed the interpretations made from earlier paleomagnetic studies. Cores of deep-sea sediments and seismic profiles obtained by the Glomar Challenger and other research vessels have provided much of the data that support the seafloor spreading theory.

According to this theory, oceanic crust continuously forms at mid-oceanic ridges, moves away from these ridges by seafloor spreading, and is consumed at subduction zones. If this is the case, then oceanic crust should be youngest at the ridges and become progressively older with increasing distance away from them. Moreover, the age of the oceanic crust should be symmetrically distributed about the ridges. As we have just noted, paleomagnetic data confirm these statements. Furthermore, fossils from sediments overlying the oceanic crust and radiometric dating of rocks found on oceanic islands both substantiate this predicted age distribution.

Sediments in the open ocean accumulate, on average, at a rate of less than 0.3 cm in 1,000 years. If the ocean basins were as old as the continents, we would expect deep-sea sediments to be several kilometers thick. However, data from numerous drill holes indicate that deep-sea sediments are, at most, only a few hundred meters thick and are thin or absent at oceanic ridges. Their near-absence at the ridges should come as no surprise because these are the areas where new crust is continuously produced by volcanism and seafloor spreading. Accordingly, sediments have had little time to accumulate at or very close to spreading ridges where the oceanic crust is young; however, their thickness increases with distance away from the ridges (Figure 2.14).
Plate tectonics is based on a simple model of Earth. The rigid lithosphere, composed of both oceanic and continental crust, as well as the underlying upper mantle, consists of numerous variable-sized pieces called plates (Figure 2.15). There are seven major plates (Eurasian, Indian-Australian, Antarctic, North American, South American, Pacific, and African), and numerous smaller ones ranging from only a few tens to several hundreds of kilometers in width. Plates also vary in thickness; those composed of upper mantle and continental crust are as much as 250 km thick, whereas those of upper mantle and oceanic crust are up to 100 km thick.

The lithosphere overlies the hotter and weaker semiplastic asthenosphere. It is thought that movement resulting from some type of heat-transfer system within the asthenosphere causes the overlying plates to move. As plates move over the asthenosphere, they separate, mostly at oceanic ridges; in other areas, such as at oceanic trenches, they collide and are subducted back into the mantle.

Figure 2.12 Magnetic Anomalies and Seafloor Spreading. The sequence of magnetic anomalies preserved within the oceanic crust is both parallel to and symmetric around oceanic ridges. Basaltic lava intruding into an oceanic ridge today and spreading laterally away from the ridge records Earth’s current magnetic field or polarity (considered by convention to be normal). Basaltic intrusions 3, 9, and 15 million years ago record Earth’s reversed magnetic field at that time. This schematic diagram shows how the solidified basalt moves away from the oceanic ridge (or spreading center), carrying with it the magnetic anomalies that are preserved in the oceanic crust. Magnetic anomalies are magnetic readings that are either higher (positive magnetic anomalies) or lower (negative magnetic anomalies) than Earth’s current magnetic field strength. The magnetic anomalies are recorded by a magnetometer, which measures the strength of the magnetic field. Modified from Kious and Tilling, USGS.

PLATE TECTONICS: A UNIFYING THEORY

Plate tectonic theory is based on a simple model of Earth. The rigid lithosphere, composed of both oceanic and continental crust, as well as the underlying upper mantle, consists of numerous variable-sized pieces called plates (Figure 2.15). There are seven major plates (Eurasian, Indian-Australian, Antarctic, North American, South American, Pacific, and African), and numerous smaller ones ranging from only a few tens to several hundreds of kilometers in width. Plates also vary in thickness; those composed of upper mantle and continental crust are as much as 250 km thick, whereas those of upper mantle and oceanic crust are up to 100 km thick.

The lithosphere overlies the hotter and weaker semiplastic asthenosphere. It is thought that movement resulting from some type of heat-transfer system within the asthenosphere causes the overlying plates to move. As plates move over the asthenosphere, they separate, mostly at oceanic ridges; in other areas, such as at oceanic trenches, they collide and are subducted back into the mantle.

An easy way to visualize plate movement is to think of a conveyer belt moving luggage from an airplane’s cargo hold to a baggage cart. The conveyer belt represents convection currents within the mantle, and the luggage represents Earth’s lithospheric plates. The luggage is moved along by the conveyer belt until it is dumped into the baggage cart in the same way that plates are moved by convection cells until they are subducted into Earth’s interior. Although this analogy allows you to visualize how the mechanism of plate movement takes place, remember that this analogy is limited. The major limitation is that, unlike the luggage, plates consist of continental and oceanic crust, which have different densities, and only oceanic crust is subducted into Earth’s interior.

Most geologists accept plate tectonic theory because the evidence for it is overwhelming and it ties together many seemingly unrelated geologic features and events and shows how they are interrelated. Consequently, geologists now view many geologic processes from the global perspective of plate tectonic theory in which plate interaction along plate margins is responsible for such phenomena as mountain building, earthquakes, and volcanism. Furthermore, because all of the inner planets have had a similar origin and early history, geologists are interested in determining whether plate tectonics is unique to Earth or whether it operates in the same way on other planets (see Geo-inSight on pages xx and xx).

THE THREE TYPES OF PLATE BOUNDARIES

Because it appears that plate tectonics has operated since at least the Proterozoic eon, it is important that we understand how plates move and interact with each other and how ancient plate boundaries are recognized. After all, the movement of plates has profoundly affected the geologic and biologic history of this planet.

Geologists recognize three major types of plate boundaries: divergent, convergent, and transform (Table 2.1). Along these boundaries, new plates are formed, are consumed, or
Interaction of plates at their boundaries accounts for most of Earth’s volcanic eruptions and earthquakes, as well as the formation and evolution of its mountain systems.

Divergent Boundaries

Divergent plate boundaries or spreading ridges occur where plates are separating and new oceanic lithosphere is forming. Divergent boundaries are places where the crust is extended, thinned, and fractured as magma, derived from the partial melting of the mantle, rises to the surface. The magma is almost entirely basaltic and intrudes into vertical fractures to form dikes and pillow lava flows (see Figure 5.7). As successive injections of magma cool and solidify, they form new oceanic crust and record the intensity and orientation of Earth’s magnetic field (Figure 2.12). Divergent boundaries most commonly occur along the crests of oceanic ridges—for example, the Mid-Atlantic Ridge. Oceanic ridges are thus characterized by rugged topography with high relief resulting from displacement of rocks along large fractures, shallow-depth earthquakes, high heat flow, and basaltic flows or pillow lavas.

Divergent boundaries are also present under continents during the early stages of continental breakup. When magma wells up beneath a continent, the crust is initially elevated, stretched, and thinned, producing fractures, faults, rift valleys, and volcanic activity (Figure 2.16a). As magma intrudes into faults and fractures, it solidifies or flows out onto the surface as lava flows; the latter often covering the rift valley floor (Figure 2.16b). The East African Rift Valley is an excellent example of continental breakup at this stage (Figure 2.17a).

As spreading proceeds, some rift valleys continue to lengthen and deepen until the continental crust eventually breaks and a narrow linear sea is formed, separating two continental blocks (Figure 2.16c). The Red Sea separating the Arabian Peninsula from Africa (Figure 2.17b) and the Gulf of California, which separates Baja California from mainland Mexico, are good examples of this more advanced stage of rifting.

As a newly created narrow sea continues to enlarge, it may eventually become an expansive ocean basin such as the Atlantic Ocean basin is today, separating North and South America from Europe and Africa by thousands of kilometers (Figure 2.16d). The Mid-Atlantic Ridge is the boundary between these diverging plates (Figure 2.11); the American plates are moving westward, and the Eurasian and African plates are moving eastward.

What Would You Do?

You’ve been selected to be part of the first astronaut team to go to Mars. While your two fellow crew members descend to the Martian surface, you’ll be staying in the command module and circling the Red Planet. As part of the geologic investigation of Mars, one of the crew members will be mapping the geology around the landing site and deciphering the geologic history of the area. Your job will be to observe and photograph the planet’s surface and try to determine whether Mars had an active plate tectonic regime in the past and whether there is current plate movement. What features would you look for, and what evidence might reveal current or previous plate activity?
igneous bodies), lava flows, and thick sedimentary sequences within rift valleys, all features that are preserved in the geologic record. The Triassic fault basins of the eastern United States are a good example of ancient continental rifting (see Figure 22.7). These fault basins mark the zone of rifting that occurred when North America split apart from Africa. The basins contain thousands of meters of continental sediment and are riddled with dikes and sills (see Chapter 22).

Pillow lavas, in association with deep-sea sediment, are also evidence of ancient rifting. The presence of pillow lavas marks the formation of a spreading ridge in a narrow linear sea. A narrow linear sea forms when the continental crust in the rift valley finally breaks apart, and the area is flooded with seawater. Magma, intruding into the sea along this newly formed spreading ridge, solidifies as pillow lavas, which are preserved in the geologic record, along with the sediment being deposited on them.

Convergent Boundaries

Whereas new crust forms at divergent plate boundaries, older crust must be destroyed and recycled in order for the entire
Tectonics of the Terrestrial Planets

The four inner, or terrestrial, planets—Mercury, Venus, Earth, and Mars—all had a similar early history involving accretion, differentiation into a metallic core and silicate mantle and crust, and formation of an early atmosphere by outgassing. Their early history was also marked by widespread volcanism and meteorite impacts, both of which helped modify their surfaces.

Whereas the other three terrestrial planets as well as some of the Jovian moons display internal activity, Earth appears to be unique in that its surface is broken into a series of plates.

Images of Mercury sent back by Mariner 10 show a heavily cratered surface with the largest impact basins filled with what appear to be lava flows similar to the lava plains on Earth’s Moon. The lava plains are not deformed, however, indicating that there has been little or no tectonic activity.

Another feature of Mercury’s surface is a large number of scarps, a feature usually associated with earthquake activity. Yet, some scientists think that these scarps formed when Mercury cooled and contracted.

Of all the planets, Venus is the most similar in size and mass to Earth, but it differs in most other respects. Whereas Earth is dominated by plate tectonics, volcanism seems to have been the dominant force in the evolution of the Venusian surface. Even though no active volcanism has been observed on Venus, the various-sized volcanic features and what appear to be folded mountains indicate a once-active planetary interior. All of these structures appear to be the products of rising convection currents of magma pushing up under the crust and then sinking back into the Venusian interior.

Venus’s Aine Corona, about 200 km in diameter, is ringed by concentric faults, suggesting that it was pushed up by rising magma. A network of fractures is visible in the upper right of this image as well as a recent lava flow at the center of the corona, several volcanic domes in the lower portion of the image, and a large volcanic pancake dome in the upper left of the image.
Volcano Sapas Mons contains two lava-filled calderas and is flanked by lava flows, attesting to the volcanic activity that was once common on Venus.

Mars, the Red Planet, has numerous features that indicate an extensive early period of volcanism. These include Olympus Mons, the solar system's largest volcano, lava flows, and uplifted regions thought to have resulted from mantle convection. In addition to volcanic features, Mars displays abundant evidence of tensional tectonics, including numerous faults and large fault-produced valley structures. Whereas Mars was tectonically active during the past, no evidence indicates that plate tectonics comparable to those on Earth has ever occurred there.

A vertical view of Olympus Mons, a shield volcano and the largest volcano in our solar system. The edge of the Olympus Mons caldera is marked by a cliff several kilometers high rather than a moat as in Mauna Loa, Earth's largest shield volcano.

Although not a terrestrial planet, Io, the innermost of Jupiter’s Galilean moons, must be mentioned. Images from the Voyager and Galileo spacecrafts show that Io has no impact craters. In fact, more than a hundred active volcanoes are visible on the moon’s surface, and the sulfurous gas and ash erupted by these volcanoes bury any newly formed meteorite impact craters. Because of its proximity to Jupiter, the heat source of Io is probably tidal heating, in which the resulting friction is enough to at least partially melt Io’s interior and drive its volcanoes.

Volcanic features of Io, the innermost moon of Jupiter. As shown in these digitally enhanced color images, Io is a very volcanically active moon.
surface area of Earth to remain the same. Otherwise, we would have an expanding Earth. Such plate destruction occurs at **convergent plate boundaries** (Figure 2.18), where two plates collide and the leading edge of one plate is subducted beneath the margin of the other plate and eventually incorporated into the asthenosphere. A dipping plane of earthquake foci, called a **Benioff zone**, defines subduction zones (see Figure 8.5). Most of these planes dip from oceanic trenches beneath adjacent island arcs or continents, marking the surface of slippage between the converging plates. Deformation, volcanism, mountain building, metamorphism, earthquake activity, and deposits of valuable minerals characterize convergent boundaries. Three types of convergent plate boundaries are recognized: **oceanic–oceanic**, **oceanic–continental**, and **continental–continental**.

Oceanic–Oceanic Boundaries When two oceanic plates converge, one is subducted beneath the other along an **oceanic–oceanic plate boundary** (Figure 2.18a). The subducting plate bends downward to form the outer wall of an oceanic trench. A **subduction complex**, composed of wedge-shaped slices of highly folded and faulted marine sediments and oceanic lithosphere scraped off the descending plate, forms along the inner wall of the oceanic trench. As the subducting plate descends into the mantle, it is heated and partially melted, generating magma commonly of andesitic composition (see Chapter 4). This magma is less dense than the surrounding mantle rocks and rises to the surface of the nonsubducted plate to form a curved chain of volcanic islands called a **volcanic island arc** (any plane intersecting a sphere makes an arc). This arc is nearly parallel to the oceanic trench and is separated from it by a distance of up to several hundred kilometers—the distance depends on the angle of dip of the subducting plate (Figure 2.18a).

In those areas where the rate of subduction is faster than the forward movement of the overriding plate, the lithosphere on the landward side of the volcanic island arc may be subjected to tectonic stress and stretched and thinned, resulting in the formation of a **back-arc basin**. This back-arc basin may grow by spreading if magma breaks through the thin crust and forms new oceanic crust (Figure 2.18a). A good example of a back-arc basin associated with an oceanic–oceanic plate boundary is the Sea of Japan between the Asian continent and the islands of Japan.

Most present-day active volcanic island arcs are in the Pacific Ocean basin and include the Aleutian Islands, the Kermade–Tonga arc, and the Japanese (Figure 2.18a) and Philippine Islands. The Scotia and Antillean (Caribbean) island arcs are in the Atlantic Ocean basin.

Oceanic–Continental Boundaries When an oceanic and a continental plate converge, the denser oceanic plate is subducted under the continental plate along an **oceanic–continental plate boundary** (Figure 2.18b). Just as at oceanic–oceanic plate boundaries, the descending oceanic plate forms the outer wall of an oceanic trench.

The magma generated by subduction rises beneath the continent and either crystallizes as large intrusive bodies, called **plutons**, before reaching the surface or erupts at the surface to produce a chain of andesitic volcanoes, also called a **volcanic arc**. An excellent example of an oceanic–continental plate boundary is the Pacific Coast of South America where the oceanic Nazca plate is currently being subducted under South America (Figure 2.18b; see also Chapter 10). The Peru–Chile Trench marks the site of subduction, and the Andes Mountains are the resulting volcanic mountain chain on the nonsubducting plate.

Continental–Continental Boundaries Two continents approaching each other are initially separated by an ocean floor that is being subducted under one continent. The edge of that continent displays the features characteristic of ocean–continental convergence. As the ocean floor continues to be subducted, the two continents come closer together until they eventually collide. Because continental lithosphere, which consists of continental crust and the upper mantle, is less dense...
The Three Types of Plate Boundaries

Figure 2.16 History of a Divergent Plate Boundary

(a) Rising magma beneath a continent pushes the crust up, producing numerous fractures, faults, rift valleys, and volcanic activity.

(b) As the crust is stretched and thinned, rift valleys develop and lava flows onto the valley floors, such as seen today in the East African Rift Valley.

(c) Continued spreading further separates the continent until it splits apart and a narrow seaway develops. The Red Sea, which separates the Arabian Peninsula from Africa, is a good example of this stage of development.

(d) As spreading continues, an oceanic ridge system forms, and an ocean basin develops and grows. The Mid-Atlantic Ridge illustrates this stage in a divergent plate boundary's history.
than oceanic lithosphere (oceanic crust and upper mantle), it cannot sink into the asthenosphere. Although one continent may partially slide under the other, it cannot be pulled or pushed down into a subduction zone (Figure 2.18c).

When two continents collide, they are welded together along a zone marking the former site of subduction. At this continental–continental plate boundary, an interior mountain belt is formed consisting of deformed sediments and sedimentary rocks, igneous intrusions, metamorphic rocks, and fragments of oceanic crust. In addition, the entire region is subjected to numerous earthquakes. The Himalayas in central Asia, the world’s youngest and highest mountain system, resulted from the collision between India and Asia that began 40 to 50 million years ago and is still continuing (Figure 2.18c; see Chapter 10).

Recognizing Ancient Convergent Plate Boundaries How can former subduction zones be recognized in the geologic record? Igneous rocks provide one clue to ancient subduction zones. The magma erupted at the surface, forming island arc volcanoes and continental volcanoes, is of andesitic composition. Another clue is the zone of intensely deformed rocks between the deep-sea trench where subduction is taking place and the area of igneous activity. Here, sediments and submarine rocks are folded, faulted, and metamorphosed into a chaotic mixture of rocks termed a mélange.

During subduction, pieces of oceanic lithosphere are sometimes incorporated into the mélange and accreted onto the edge of the continent. Such slices of oceanic crust and upper mantle are called ophiolites (Figure 2.19). They consist of a layer of deep-sea sediments that include graywackes (poorly sorted sandstones containing abundant feldspars and rock fragments, usually in a clay-rich matrix), black shales, and cherts (see Chapter 6). These deep-sea sediments are underlain by pillow lavas, a sheeted dike complex, massive gabbro (a dark intrusive igneous rock), and layered gabbro, all of which form the oceanic crust. Beneath the gabbro is peridotite (a dark intrusive igneous rock composed of the mineral olivine), which probably represents the upper mantle. The presence of ophiolite in an outcrop or drilling core is a key indicator of plate convergence along a subduction zone.
The Three Types of Plate Boundaries

(a) Oceanic-oceanic plate boundary. An oceanic trench forms where one oceanic plate is subducted beneath another. On the nonsubducted plate, a volcanic island arc forms from the rising magma generated from the subducting plate. The Japanese Islands are a volcanic island arc resulting from the subduction of one oceanic plate beneath another oceanic plate.

(b) Oceanic-continental plate boundary. When an oceanic plate is subducted beneath a continental plate, an andesitic volcanic mountain range is formed on the continental plate as a result of rising magma. The Andes Mountains in Peru are one of the best examples of continuing mountain building at an oceanic-continental plate boundary.

(c) Continental-continental plate boundary. When two continental plates converge, neither is subducted because of their great thickness and low and equal densities. As the two continental plates collide, a mountain range is formed in the interior of a new and larger continent. The Himalayas in central Asia resulted from the collision between India and Asia approximately 40 to 50 million years ago.

Figure 2.18 Three Types of Convergent Plate Boundaries
in the Gulf of California with the Juan de Fuca and Pacific plates off the coast of northern California (Figure 2.21). Many of the earthquakes that affect California are the result of movement along this fault (see Chapter 8).

Unfortunately, transform faults generally do not leave any characteristic or diagnostic features except for the obvious displacement of the rocks with which they are associated. This displacement is usually large, on the order of tens to hundreds of kilometers. Such large displacements in ancient rocks can sometimes be related to transform fault systems.

HOT SPOTS AND MANTLE PLUMES

Before leaving the topic of plate boundaries, we should mention an intraplate feature found beneath both oceanic and continental plates. A hot spot (Figure 2.15) is the location on Earth’s surface where a stationary column of magma, originating deep within the mantle (mantle plume), has slowly risen to the surface and formed a volcano. Because the mantle plumes apparently remain stationary (although some evidence suggests that they might not) within the mantle while the plates move over them, the resulting hot spots leave a trail of extinct and progressively older volcanoes called aseismic ridges that record the movement of the plate.

One of the best examples of aseismic ridges and hot spots is the Emperor Seamount–Hawaiian Island chain (Figure 2.22). This chain of islands and seamounts (structures of volcanic origin rising higher than 1 km above the seafloor) extends from the island of Hawaii to the Aleutian Trench off Alaska, a distance of some 6000 km, and consists of more than 80 volcanic structures.

Currently, the only active volcanoes in this island chain are on the island of Hawaii and the Loihi Seamount. The rest of the islands are extinct volcanic structures that become progressively older toward the north and northwest. This means that the Emperor Seamount–Hawaiian Island chain records the direction that the Pacific plate traveled as it moved over an apparently stationary mantle plume. In this case, the Pacific plate first moved in a north-northwesterly direction and then, as indicated by the sharp bend in the chain, changed to a west-northwesterly direction approximately 43 million years ago. The reason that the Pacific plate changed directions is not known, but the shift might be related to the collision of India with the Asian continent at about the same time (see Figure 10.22).

Mantle plumes and hot spots help geologists explain some of the geologic activity occurring within plates as opposed to activity occurring at or near plate boundaries. In addition, if mantle plumes are essentially fixed with respect to Earth’s rotational axis, they can be used to determine not only the direction of plate movement, but also the rate of movement. They can also provide refer-

Transform Boundaries

The third type of plate boundary is a transform plate boundary. These mostly occur along fractures in the seafloor, known as transform faults, where plates slide laterally past one another roughly parallel to the direction of plate movement. Although lithosphere is neither created nor destroyed along a transform boundary, the movement between plates results in a zone of intensely shattered rock and numerous shallow-depth earthquakes.

Transform faults “transform” or change one type of motion between plates into another type of motion. Most commonly, transform faults connect two oceanic ridge segments; however, they can also connect ridges to trenches and trenches to trenches (Figure 2.20). Although the majority of transform faults are in oceanic crust and are marked by distinct fracture zones, they may also extend into continents.

One of the best-known transform faults is the San Andreas fault in California. It separates the Pacific plate from the North American plate and connects spreading ridges
Horizontal movement between plates occurs along transform faults. Extensions of transform faults on the seafloor form fracture zones.
Figure 2.21 The San Andreas Fault—A Transform Plate Boundary
The San Andreas fault is a transform fault separating the Pacific plate from the North American plate. It connects the spreading ridges in the Gulf of California with the Juan de Fuca and Pacific plates off the coast of northern California. Movement along the San Andreas fault has caused numerous earthquakes. The insert photograph shows a segment of the San Andreas fault as it cuts through the Carrizo Plain, California.

PLATE MOVEMENT AND MOTION
How fast and in what direction are Earth’s plates moving? Do they all move at the same rate? Rates of plate movement can be calculated in several ways. The least accurate method is to determine the age of the sediments immediately above any portion of the oceanic crust and then divide the distance from the spreading ridge by that age. Such calculations give an average rate of movement.

A more accurate method of determining both the average rate of movement and relative motion is by dating the magnetic anomalies in the crust of the seafloor. The distance from an oceanic ridge axis to any magnetic anomaly indicates the width of new seafloor that formed during that time interval. For example, if the distance between the present-day Mid-Atlantic Ridge and anomaly 31 is 2010 km, and anomaly 31 formed 67 million years ago (Figure 2.23), then the average rate of movement during the past 67 million years has been \(\frac{201 \text{ km}}{67 \text{ million years}} = 3 \text{ cm/year} \). Thus, for a given interval of time, the wider the strip of seafloor, the faster the plate has moved. In this way, not only can the present average rate of movement and relative motion be determined (Figure 2.15), but the average rate of movement in the past can also be calculated by dividing the distance between anomalies by the amount of time elapsed between anomalies.

Geologists use magnetic anomalies not only to calculate the average rate of plate movement, but also to determine plate positions at various times in the past. Because magnetic anomalies are parallel and symmetric with respect to spreading ridges, all one must do to determine the position of continents when particular anomalies formed is to move the anomalies back to the spreading ridge, which will also move the continents with them (Figure 2.23). Unfortunately, subduction destroys oceanic crust and the magnetic record that it carries. Thus, we have an excellent record of plate movements since the breakup of Pangaea, but not as good an understanding of plate movement before that time.

The average rate of movement, as well as the relative motion between any two plates, can also be determined by satellite-laser ranging techniques. Laser beams from a station on one plate are bounced off a satellite (in geosynchronous orbit) and returned to a station on a different plate. As the plates move away from each other, the laser beam takes more time to go from the sending station to the stationary satellite and back to the receiving station. This difference in elapsed time is used to calculate the rate of movement and the relative motion between plates.
Plate motions derived from magnetic reversals and satellite-laser ranging techniques give only the relative motion of one plate with respect to another. Hot spots allow geologists to determine absolute motion because they provide an apparently fixed reference point from which the rate and direction of plate movement can be measured.

Plate motions derived from magnetic reversals and satellite-laser ranging techniques give only the relative motion of one plate with respect to another. Hot spots allow geologists to determine absolute motion because they provide an apparently fixed reference point from which the rate and direction of plate movement can be measured.

The previously mentioned Emperor Seamount–Hawaiian Island chain formed as a result of movement over a hot spot. Thus, the line of the volcanic islands traces the direction of plate movement, and dating the volcanoes enables geologists to determine the rate of movement.

THE DRIVING MECHANISM OF PLATE TECTONICS

A major obstacle to the acceptance of the continental drift hypothesis was the lack of a driving mechanism to explain continental movement. When it was shown that continents and ocean floors moved together, not separately, and that new crust is formed at spreading ridges by rising magma, most geologists accepted some type of convective heat system (convection cells) as the basic process responsible for plate motion. The question still remains, however: What exactly drives the plates?

Most of the heat from Earth’s interior results from the decay of radioactive elements, such as uranium (see Chapter 17), in the core and lower mantle. The most efficient way for this heat to escape Earth’s interior is through some type of slow convection of mantle rock in which hot rock from the interior rises toward the surface, loses heat to the overlying lithosphere, becomes denser as it cools, and then sinks back into the interior where it is heated, and the process repeats itself. This type of convective heat system is analogous to a pot of stew cooking on a stove (Figure 2.24).
Two models involving thermal convection cells have been proposed to explain plate movement (Figure 2.25). In one model, thermal convection cells are restricted to the asthenosphere; in the second model, the entire mantle is involved. In both models, spreading ridges mark the ascending limbs of adjacent convection cells, and trenches are present where convection cells descend back into Earth's interior. The convection cells therefore determine the location of spreading ridges and trenches, with the lithosphere lying above the thermal convection cells. Thus, each plate corresponds to a single convection cell and moves as a result of the convective movement of the cell itself.

Two models involving thermal convection cells have been proposed to explain plate movement. Although most geologists agree that Earth's internal heat plays an important role in plate movement, there are problems with both models. The major problem associated with the first model is the difficulty of explaining the source of heat for the convection cells and why they are restricted to the asthenosphere. In the second model, the heat comes from the outer core, but it is still not known how heat is transferred from the outer core to the mantle. Nor is it clear how convection can involve both the lower mantle and the asthenosphere.

In addition to some type of thermal convection system driving plate movement, some geologists think that plate movement occurs because of a mechanism involving “slab-pull” or “ridge-push,” both of which are gravity driven but still depend on thermal differences within Earth (Figure 2.26). In slab-pull, the subducting cold slab of lithosphere, being denser than the surrounding warmer asthenosphere, pulls the rest of the plate along as it descends into the asthenosphere. As the lithosphere moves downward, there is a corresponding upward flow back into the spreading ridge.

Operating in conjunction with slab-pull is the ridge-push mechanism. As a result of rising magma, the oceanic ridges are higher than the surrounding oceanic crust. It is thought that gravity pushes the oceanic lithosphere away from the higher spreading ridges and toward the trenches.

Currently, geologists are fairly certain that some type of convective system is involved in plate movement, but the extent to which other mechanisms, such as slab-pull and ridge-push, are involved is still unresolved. However, the fact that plates have moved in the past and are still moving today has been proven beyond a doubt. And although a comprehensive theory of plate movement has not yet been developed, more and more of the pieces are falling into place as geologists learn more about Earth’s interior.

The Supercontinent Cycle
As a result of plate movement, all the continents came together to form the supercontinent Pangaea by the end of
the Paleozoic Era. Pangaea began fragmenting during the Triassic Period and continues to do so, thus accounting for the present distribution of continents and ocean basins. It has been proposed that supercontinents consisting of all or most of Earth’s landmasses form, break up, and come together again in a cycle spanning approximately 500 million years.

The supercontinent cycle hypothesis is an expansion on the ideas of the Canadian geologist J. Tuzo Wilson. During the early 1970s, Wilson proposed a cycle (now known as the Wilson cycle) that includes continental fragmentation, the opening and closing of an ocean basin, and reassembly of the continent. According to the supercontinent cycle hypothesis, heat accumulates beneath a supercontinent because the rocks of continents are poor conductors of heat. As a result of the heat accumulation, the supercontinent domes upward and fractures. Basaltic magma rising from below fills the fractures. As a basalt-filled fracture widens, it begins subsiding and forms a long narrow ocean, such as the present-day Red Sea. Continued rifting eventually forms an expansive ocean basin, such as the Atlantic.

One of the most convincing arguments for proponents of the supercontinent cycle hypothesis is the “surprising regularity” of mountain building caused by compression during continental collisions. These mountain-building episodes occur about every 400 to 500 million years and are followed by an episode of rifting about 100 million years later. In other words, a supercontinent fragments and its individual plates disperse following a rifting episode, an interior ocean forms, and then the dispersed fragments reassemble to form another supercontinent.

The supercontinent cycle is yet another example of how interrelated the various systems and subsystems of Earth are and how they operate over vast periods of geologic time.

PLATE TECTONICS AND THE DISTRIBUTION OF NATURAL RESOURCES

In addition to being responsible for the major features of Earth’s crust and influencing the distribution and evolution of the world’s biota, plate movement also affects the formation and distribution of some natural resources.

Consequently, geologists are using plate tectonic theory in their search for petroleum (see Geo-Focus on page xx) and mineral deposits and in explaining the occurrence of these natural resources. It is becoming increasingly clear that if we are to keep up with the continuing demands of a global industrialized society, the application of plate tectonic theory to the origin and distribution of natural resources is essential.

Although large concentrations of petroleum occur in many areas of the world, more than 50% of all proven reserves are in the Persian Gulf region. The reason for this is paleogeography and plate movement. Elsewhere in the world, plate tectonics is also responsible for concentrations of petroleum. The formation of the Appalachians, for example, resulted from the compressive forces generated along a convergent plate boundary and provided the structural traps necessary for petroleum to accumulate.

Mineral Deposits

Many metallic mineral deposits such as copper, gold, lead, silver, tin, and zinc are related to igneous and associated hydrothermal (hot water) activity. So it is not surprising that a close relationship exists between plate boundaries and the occurrence of these valuable deposits.

The magma generated by partial melting of a subducting plate rises toward the surface, and as it cools, it precipitates and concentrates various metallic ores. Many of the world’s major metallic ore deposits are associated with convergent plate boundaries, including those in the Andes of South America, the Coast Ranges and Rockies of North America, Japan, the Philippines, Russia, and a zone extending from

Figure 2.26 Plate Movement Resulting from Gravity-Driven Mechanisms

Plate movement is also thought to result, at least partially, from gravity-driven “slab-pull” or “ridge-push” mechanisms. In slab-pull, the edge of the subducting plate descends into the interior, and the rest of the plate is pulled downward. In ridge-push, rising magma pushes the oceanic ridges higher than the rest of the oceanic crust. Gravity thus pushes the oceanic lithosphere away from the ridges and toward the trenches.
the eastern Mediterranean region to Pakistan. In addition, the majority of the world’s gold is associated with sulfide deposits located at ancient convergent plate boundaries in such areas as Canada, Alaska, California, Venezuela, Brazil, Russia, southern India, and western Australia.

The copper deposits of western North and South America are an excellent example of the relationship between convergent plate boundaries and the distribution, concentration, and exploitation of valuable metallic ores (Figure 2.27a). The world’s largest copper deposits are found along this belt. The majority of the copper deposits in the Andes and the southwestern United States were formed less than 60 million years ago when oceanic plates were subducted under the North and South American plates. The rising magma and associated hydrothermal fluids carried minute amounts of copper, which were originally widely disseminated but eventually became concentrated in the cracks and fractures of the surrounding andesites. These low-grade copper deposits contain from 0.2 to 2% copper and are extracted from large open-pit mines (Figure 2.27b).

Divergent plate boundaries also yield valuable ore resources. The island of Cyprus in the Mediterranean is rich in copper and has been supplying all or part of the world’s needs for the past 3000 years. The concentration of copper on Cyprus formed as a result of precipitation adjacent to hydrothermal vents along a divergent plate boundary. This deposit was brought to the surface when the copper-rich seafloor collided with the European plate, warping the seafloor and forming Cyprus.

Studies indicate that minerals of such metals as copper, gold, iron, lead, silver, and zinc are currently forming as sulfides in the Red Sea. The Red Sea is opening as a result of plate divergence and represents the earliest stage in the growth of an ocean basin (Figures 2.16c and 2.17b).

PLATE TECTONICS AND THE DISTRIBUTION OF LIFE

Plate tectonic theory is as revolutionary and far-reaching in its implications for geology as the theory of evolution was for biology when it was proposed. Interestingly, it was the fossil evidence that convinced Wegener, Suess, and du Toit, as well as many other geologists, of the correctness of continental drift. Together, the theories of plate tectonics and evolution have changed the way we view our planet, and we should...
not be surprised at the intimate association between them. Although the relationship between plate tectonic processes and the evolution of life is incredibly complex, paleontological data provide convincing evidence of the influence of plate movement on the distribution of organisms.

The present distribution of plants and animals is not random, but is controlled mostly by climate and geographic barriers. The world’s biota occupy biotic provinces, which are regions characterized by a distinctive assemblage of plants and animals. Organisms within a province have similar ecological requirements, and the boundaries separating provinces are therefore natural ecological breaks. Climatic or geographic barriers are the most common province boundaries, and these are mostly controlled by plate movement.

The complex interaction between wind and ocean currents has a strong influence on the world’s climates. Wind and ocean currents are thus strongly influenced by the number, distribution, topography, and orientation of continents. For example, the southern Andes Mountains act as

Geo-Focus Oil, Plate Tectonics, and Politics

It is certainly not surprising that oil and politics are closely linked. The Iran–Iraq War of 1980–1989 and the Gulf War of 1990–1991 were both fought over oil (Figure 1). Indeed, many of the conflicts in the Middle East have shared as their underlying cause the desire to control the vast deposits of petroleum in the region. Most people, however, are not aware of why there is so much oil in this part of the world.

Although significant concentrations of petroleum occur in many areas of the world, more than 50% of all proven reserves are in the Persian Gulf region. It is interesting, however, that this region did not become a significant petroleum-producing area until the economic recovery following World War II (1939–1945). After the war, Western Europe and Japan in particular became dependent on Persian Gulf oil, and they still rely heavily on this region for most of their supply. The United States is also dependent on imports from the Persian Gulf, but receives significant quantities of petroleum from other sources, such as Mexico and Venezuela.

Why is there so much oil in the Persian Gulf region? The answer lies in the ancient geography and plate movement of this region during the Mesozoic and Cenozoic eras. During the Mesozoic Era, and particularly the Cretaceous Period when most of the petroleum formed, the Persian Gulf area was a broad marine shelf extending eastward from Africa.

This continental margin lay near the equator where countless microorganisms lived in the surface waters. The remains of these organisms accumulated with the bottom sediments and were buried, beginning the complex process of petroleum generation and the formation of source beds in which petroleum forms.

As a consequence of rifting in the Red Sea and the Gulf of Aden during the Cenozoic Era, the Arabian plate is moving northeast away from Africa and subducting beneath Iran (Figure 2.17a). During the early stages of collision between Arabia and Iran, as the sediments of the passive continental margin were initially subducted, heating broke down the organic molecules and led to the formation of petroleum.

The tilting of the Arabian block to the northeast allowed the newly formed petroleum to migrate upward into the interior of the Arabian plate. The continued subduction and collision with Iran folded the rocks, creating traps for petroleum to accumulate, such that the vast area south of the collision zone (known as the Zagros suture) is a major oil-producing region.

Figure 1 The Kuwaiti night skies were illuminated by 700 blazing oil wells set on fire by Iraqi troops during the 1991 Gulf War. The fires continued for nine months.
an effective barrier to moist, easterly blowing Pacific winds, resulting in a desert east of the southern Andes that is virtually uninhabitable.

The distribution of continents and ocean basins not only influences wind and ocean currents, but also affects provinciality by creating physical barriers to, or pathways for, the migration of organisms. Intraplate volcanoes, island arcs, mid-oceanic ridges, mountain ranges, and subduction zones all result from the interaction of plates, and their orientation and distribution strongly influence the number of provinces and hence total global diversity. Thus, provinciality and diversity will be highest when there are numerous small continents spread across many zones of latitude.

When a geographic barrier separates a once-uniform fauna, species may undergo divergence. If conditions on opposite sides of the barrier are sufficiently different, then species must adapt to the new conditions, migrate, or become extinct. Adaptation to the new environment by various species may involve enough change that new species eventually evolve.

The marine invertebrates found on opposite sides of the Isthmus of Panama provide an excellent example of divergence caused by the formation of a geographic barrier. Prior to the rise of this land connection between North and South America, a homogeneous population of bottom-dwelling invertebrates inhabited the shallow seas of the area. After the rise of the Isthmus of Panama by subduction of the Pacific plate approximately 5 million years ago, the original population was divided. In response to the changing environment, new species evolved on opposite sides of the isthmus (Figure 2.28).

The formation of the Isthmus of Panama also influenced the evolution of the North and South American mammalian faunas. During most of the Cenozoic Era, South America was an island continent, and its mammalian fauna evolved in isolation from the rest of the world’s faunas. When North and South America were connected by the Isthmus of Panama, most of the indigenous South American mammals were replaced by migrants from North America. Surprisingly, only a few South American mammal groups migrated northward.

![Figure 2.28 Plate Tectonics and the Distribution of Organisms](image)
(a) The Isthmus of Panama forms a barrier that divides a once-uniform fauna of molluscs. (b) Divergence of gastropod and bivalve species after the formation of the Isthmus of Panama. Each pair belongs to the same genus but is a different species.
The concept of continental movement is not new. The earliest maps showing the similarity between the east coast of South America and the west coast of Africa provided the first evidence that continents may once have been united and subsequently separated from each other. Alfred Wegener is generally credited with developing the hypothesis of continental drift. He provided abundant geologic and paleontologic evidence to show that the continents were once united in one supercontinent, which he named Pangaea. Unfortunately, Wegener could not explain how the continents moved, and most geologists ignored his ideas.

The hypothesis of continental drift was revived during the 1950s when paleomagnetic studies of rocks indicated the presence of multiple magnetic north poles instead of just one as there is today. This paradox was resolved by constructing a map in which the continents could be moved into different positions such that the paleomagnetic data would then be consistent with a single magnetic north pole.

Seafloor spreading was confirmed by the discovery of magnetic anomalies in the ocean crust that were both parallel to and symmetric around the ocean ridges. The pattern of oceanic magnetic anomalies matched the pattern of magnetic reversals already known from continental lava flows.

Plate tectonic theory became widely accepted by the 1970s because the evidence overwhelmingly supports it and because it provides geologists with a powerful theory for explaining such phenomena as volcanism, earthquake activity, mountain building, global climatic changes, the distribution of the world’s biota, and the distribution of mineral resources.

Three types of plate boundaries are recognized: divergent boundaries, where plates move away from each other; convergent boundaries, where two plates collide; and transform boundaries, where two plates slide past each other.

Ancient plate boundaries can be recognized by their associated rock assemblages and geologic structures. For divergent boundaries, these may include rift valleys with thick sedimentary sequences and numerous dikes and sills. For convergent boundaries, ophiolites and andesitic rocks are two characteristic features. Transform faults generally do not leave any characteristic or diagnostic features in the geologic record.

The average rate of movement and relative motion of the plates can be calculated in several ways. The results of these different methods all agree and indicate that the plates move at different average velocities.

The absolute motion of plates can be determined by the movement of plates over mantle plumes. A mantle plume is an apparently stationary column of magma that rises to the surface where it becomes a hot spot and forms a volcano.

Although a comprehensive theory of plate movement has yet to be developed, geologists think that some type of convective heat system is the major driving force.

The supercontinent cycle indicates that all or most of Earth’s landmasses form, break up, and form again in a cycle spanning approximately 500 million years.

A close relationship exists between the formation of some mineral deposits and petroleum, and plate boundaries. Furthermore, the formation and distribution of some natural resources are related to plate movement.

The relationship between plate tectonic processes and the evolution of life is complex. The distribution of plants and animals is not random, but is controlled mostly by climate and geographic barriers, which are controlled, to a great extent, by the movement of plates.

Important Terms
- continental–continental plate boundary (p. xx)
- continental drift (p. xx)
- convergent plate boundary (p. xx)
- Curie point (p. xx)
- divergent plate boundary (p. xx)
- *Glossopteris* flora (p. xx)
- Gondwana (p. xx)
- hot spot (p. xx)
- Laurasia (p. xx)
- magnetic anomaly (p. xx)
- magnetic field (p. xx)
- magnetic reversal (p. xx)
- magnetism (p. xx)
- oceanic–continental plate boundary (p. xx)
- oceanic–oceanic plate boundary (p. xx)
- paleomagnetism (p. xx)
- Pangaea (p. xx)
- plate tectonic theory (p. xx)
- seafloor spreading (p. xx)
- thermal convection cell (p. xx)
- transform fault (p. xx)
- transform plate boundary (p. xx)
Review Questions

1. The man credited with developing the continental drift hypothesis is
 a. _____ Wilson;
 b. _____ Wegener;
 c. _____ Hess;
 d. _____ du Toit;
 e. _____ Vine.

2. The southern part of Pangaea, consisting of South America, Africa, India, Australia, and Antarctica, is called
 a. _____ Laurasia;
 b. _____ Gondwana;
 c. _____ Panthalassa;
 d. _____ Laurentia;
 e. _____ Pacifica.

3. Hot spots and aseismic ridges can be used to determine the
 a. _____ location of divergent plate boundaries;
 b. _____ absolute motion of plates;
 c. _____ location of magnetic anomalies in oceanic crust;
 d. _____ relative motion of plates;
 e. _____ location of convergent plate boundaries.

4. Along what type of boundary does subduction occur?
 a. _____ divergent;
 b. _____ transform;
 c. _____ convergent;
 d. _____ answers a and b;
 e. _____ answers a and c.

5. The Himalayas are a good example of what type of plate boundary?
 a. _____ continental–continental;
 b. _____ oceanic–oceanic;
 c. _____ oceanic–continental;
 d. _____ divergent;
 e. _____ transform.

6. The most common biotic province boundaries are
 a. _____ geographic barriers;
 b. _____ biologic barriers;
 c. _____ climatic barriers;
 d. _____ answers a and b;
 e. _____ answers a and c.

7. Magnetic surveys of the ocean basins indicate that
 a. _____ the oceanic crust is youngest adjacent to mid-oceanic ridges;
 b. _____ the oceanic crust is oldest adjacent to mid-oceanic ridges;
 c. _____ the oceanic crust is youngest adjacent to the continents;
 d. _____ the oceanic crust is the same age everywhere;
 e. _____ answers b and c.

8. Convergent plate boundaries are areas where
 a. _____ new continental lithosphere is forming;
 b. _____ new oceanic lithosphere is forming;
 c. _____ two plates come together;
 d. _____ two plates slide past each other;
 e. _____ two plates move away from each other.

9. Iron-bearing minerals in magma gain their magnetism and align themselves with the magnetic field when they cool through the
 a. _____ Curie point;
 b. _____ magnetic anomaly point;
 c. _____ thermal convection point;
 d. _____ hot spot point;
 e. _____ isostatic point.

10. The San Andreas fault is an example of what type of plate boundary?
 a. _____ divergent;
 b. _____ convergent;
 c. _____ transform;
 d. _____ oceanic–continental;
 e. _____ continental–continental.

11. Using the age for each of the Hawaiian Islands in Figure 2.22 and an atlas in which you can measure the distance between islands, calculate the average rate of movement per year for the Pacific plate since each island formed. Is the average rate of movement the same for each island? Would you expect it to be? Explain why it may not be.

12. What evidence convinced Wegener and others that continents must have moved in the past and at one time formed a supercontinent?

13. Estimate the age of the seafloor crust and the age and thickness of the oldest sediment off the East Coast of the United States (e.g., Virginia). In so doing, refer to Figure 2.13 for the ages and to the deep-sea sediment accumulation rate stated in this chapter.

14. In addition to the volcanic eruptions and earthquakes associated with convergent and divergent plate boundaries, why are these boundaries also associated with the formation and accumulation of various metallic ore deposits?

15. If the movement along the San Andreas fault, which separates the Pacific plate from the North American plate, averages 5.5 cm per year, how long will it take before Los Angeles is opposite San Francisco?

16. Plate tectonic theory builds on the continental drift hypothesis and the theory of seafloor spreading. As such, it is a unifying theory of geology. Explain why it is a unifying theory.

17. Why is some type of thermal convection system thought to be the major force driving plate movement? How have slab-pull and ridge-push, both mainly
gravity driven, modified a purely thermal convection model for plate movement?

18. Based on your knowledge of biology and the distribution of organisms throughout the world, how do you think plate tectonics has affected this distribution both on land and in the oceans?

19. What is the supercontinent cycle? Who proposed this concept, and what elements of continental drift and seafloor spreading are embodied in the cycle?

20. Explain why global diversity increases with an increase in the number of biotic provinces. How does plate movement affect the number of biotic provinces?